Two different types of LTP are known: mossy fiber LTP and Schaffer collateral type LTP. While the basis of mossy fiber LTP is not clearly known; it involves modification of the presynaptic terminal, and is independent of NMDA. A schematic and functional diagram for Schaffer collateral LTP is presented here. But before that, allow me to digress a little bit.
Your computer has a DRAM (Dynamic Random Access Memory
You’ll now understand why this digital analogy as we discuss LTP.
These Ca++ then bind with Calmodulin present within the cell to form a complex, which then activates calcium-calmodulin kinase 2 (Ca/Cam k2). This newly formed compound then activates (phosphorylates) AMPA receptors, resulting in: 1) increased activity conductance of the already existing AMPA receptors in the cell membrane 2) Recruitment of AMPA receptors from within the cell to the cell membrane. So we can see that the synaptic strength is increased with each firing by both AMPA recruitment and increased AMPA conductance. The synapse stops at not only this, the postsynaptic neuron also discharges a ‘diffusible’ messenger, nitric oxide (NO), which 'tells' the presynaptic neuron to discharge more quantal release of glutamate next time. The phenomenon epitomizes Hebbian learning: Cells that fire together, wire together.
But the memories so formed need to be stabilized as in the case of DRAM. In the central nervous system, dendritic spines are the main postsynaptic sites. These tiny protrusions form and change over a few hours. In hippocampal slice cultures it was shown, by De Roo and colleagues, that application of theta burst remodeled the dendritic spines; unused ones were shed (trimmed) while used ones were stabilized and new spines were formed. LTP was the chemical basis of all these modifications. They used GFP or green fluorescent protein for visualizing these changes of neural plasticity. However, they (physical units of memory) can also be seen by restorative deconvolution microscopy, in the form of flattened synapses (as if the ohmic resistance getting diminished in their electronic cousins) and hence more area for contact between the pre and postsynaptic neurons. So like DRAM chips, our memory chips too need to be constantly refreshed, even long term memories need maintenance.
Last modified: Jun 26, 2010
Reference:Dominique Muller, Morgan Sheng, Mathias De Roo, Paul Klauser, & Morgan Sheng (2008). LTP Promotes a Selective Long-Term Stabilization and Clustering of Dendritic Spines PLoS Biology
No comments:
Post a Comment